Parallel Adaptive hp - Refinement Techniques for Conservation Laws *
نویسندگان
چکیده
Abstract We describe an adaptive hp-refinement local finite element procedure for the parallel solution of hyperbolic systems of conservation laws on rectangular domains. The local finite element procedure utilizes spaces of piecewise-continuous polynomials of arbitrary degree and coordinated explicit Runge-Kutta temporal integration. A solution limiting procedure produces monotonic solutions near discontinuities while maintaining high-order accuracy near smooth extrema. A modified tiling procedure maintains processor load balance on parallel, distributed-memory MIMD computers by migrating finite elements between processors in overlapping neighborhoods to produce locally balanced computations. Grids are stored in tree data structures, with finer grids being offspring of coarser ones. Within each grid, AVL trees simplify the transfer of information between neighboring processors and the insertion and deletion of elements as they migrate between processors. Computations involving Burgers’ and Euler’s equations of inviscid flow demonstrate the effectiveness of the hp-refinement and balancing procedures relative to non-balanced adaptive and balanced non-adaptive procedures.
منابع مشابه
A Parallel hp-Adaptive Discontinuous Galerkin . Method for Hyperbolic Conservation Laws
This paper describes a parallel adaptive strategy based on discontinuous hp-finite element approximations oflinear, scalar, hyperbolic conservation laws. The paper focuses on the development of an effective parallel adaptive strategy for such problems, Numerical experiments suggest that these techniques arc highly parallelizablc a.nd deliver super-linear rates of convergence, thereby yielding e...
متن کاملhp-VERSION DISCONTINUOUS GALERKIN METHODS FOR HYPERBOLIC CONSERVATION LAWS: A PARALLEL ADAPTIVE STRATEGY
This paper describes a parallel algorithm based on discontinuous hp-finite element approximations of linear, scalar, hyperbolic conservation laws. The paper focuseson the development of an elTcctiveparallel adaptive strategy for such problems. Numerical experimeOlssuggest that these techniques are highly parallelizable and exponentially convergent, thereby yielding cflicien.:yIllany times super...
متن کاملAdaptive Local Refinement with Octree Load Balancing for the Parallel Solution of Three-Dimensional Conservation Laws
متن کامل
Racoon: A parallel mesh-adaptive framework for hyperbolic conservation laws
We report on the development of a computational framework for the parallel, mesh-adaptive solution of systems of hyperbolic conservation laws like the timedependent Euler equations in compressible gas dynamics or Magneto-Hydrodynamics (MHD) and similar models in plasma physics. Local mesh refinement is realized by the recursive bisection of grid blocks along each spatial dimension, implemented ...
متن کاملLocal Adaptive Mesh Refinement for Shock Hydrodynamics
The aim of this work is the development of an automatic, adaptive mesh refinement strategy for solving hyperbolic conservation laws in two dimensions. There are two main difficulties in doing this. The first problem is due to the presence of discontinuities in the solution and the effect on them of discontinuities in the mesh. The second problem is how to organize the algorithm to minimize memo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994